
section 4-m) is shown in Fig. 4b (line 1 for 0 = 0.36 and line 2 for O = 0.18). The loca- 
tion of the separation line for 8w = 0.18, 8 t = 0.36, and ~ = 1 is denoted by 5 in Fig. 1 
(the solid line shows the direction of the flow), and for @w = 0.18, 8 t = 0.36, and ~ = 2.16 
by 6 (the dashed line shows the direction of the flow). The influence of the flow noniso- 
thermicity on the position of the separation line is not essential. 

The numerical experiment conducted to determine the effect of the distance between the 
fictitious boundaries on the flow pattern showed that,while this distance decreases by 6, 
the separation line is displaced by approximately 6/2 in the direction which provides better 
agreement with the experimental data. The influence of the position of the fictitious bound- 
aries on the calculated position of the separation line was also examined. It was established 
that the calculated position of the separation line is not affected by changes of the posi- 
tion of the fictitious boundaries where the proper velocity profile was assigned. The pos- 
ition of the fictitious boundaries, chosen as hk and op in Fig. i, seems to be more suitable 
for investigating the influence of nonisothermicity on the flow pattern, and more convenient 
from the point of view of numerical realization. 

1. 

2. 

3. 

4. 
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ACOUSTIC PROPERTIES OF A POROUS LAMINATED MEDIUM 

M. G. Markov and A. Yu. Yumatov UDC 624.131 

Study of the propagation of elastic waves in nonuniform, saturated, porous media is of 
interest both theoretically and from the viewpoint of applications in engineering and geo- 
physics. The propagation of elastic waves in such media can be systematically described 
within the framework of the Frenkel-Biot theory [I-4]. 
can write the equations of this theory in the form 

O2ul 02vl 0 OPi i 
P l ! - ~  + 022 0 -~  = b ~7 ( v ~ -  u~) 8xj 

02Ui O2vl ~ ~ 
az~' 

Ignoring thermoelastic effects, we 

(1) 

where u i and v i are components of the displacement vectors of the skeleton and fluid; Pzl 
is the effective density of the skeleton moving in the filler; P22 is the effective density 
of the filler moving in the porous medium; Pl2 < 0 is the added density of the fluid; Pi �9 = 
Ae6ij + 2Neij + QaSij; s = Qe + R~; e = divu; ~ = divv; eij = (I/2)(3ui/~x j + 8uj/Sxi) ; ~, 
N, Q, R are constants of the elastic constraints of the porous medium; the coefficient b 
characterizes friction due to the motion of the fluid: b = ~/Epr (D is the viscosity of 
the fluid, ~ is bulk porosity, and Kpr is the permeability) 

After we introduce the two scalar potentials 91 and 92 of the longitudinal waves and 
the vector potential of the transverse wave by means of the relations 

u = Vg~ + V92 + r o t W ;  (2)  

v = M1V91 + M2V92 + Mt rotu2" (3) 

in  t h e  c a s e  o f  ha rmonic  waves ,  sy s t em (1)  r e d u c e s  t o  a sy s t em o f  two s c a l a r  He lmho l t z  e q u a t i o n s  
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2 A ~ i + k ~ = O  ( ~ = 1 , 2 )  

and the vector equation 

Aw + k ~  = o. 

Here, M i = (V12 - ~i012 + iv)/('-~22 + ~i022 + iv) (i = i, 2); k~ 
H = A + 2N + 2Q + R; p = Pll + 2P12 + P22, while ~i are roots o~ 

(4) 

(5 )  

= ~ i ( ~ / V o ) ~ ;  Vo = r 
t h e  q u a d r a t i c  e q u a t i o n  

~ ( g l l f f 2 2  - -  f f~2)  - -  ~ i  (ffllV22 + ff22~11 - -  2~12712 - -  i?) + 711~'~ - -  ?~2 - -  iV = 0, ( 6 )  

i n  w h i c h  V l l =  P l l / P ;  V12 = P 1 2 / 0 ;  V22 = P 2 2 / P ;  V = - b / p ~ ;  e l l  = ( A +  2 N ) / H ;  012 = 0 / H ;  
o22 = R/H.  The  wave  number  o f  t h e  t r a n s v e r s e  w a v e ,  k t ,  i s  f o u n d  f r o m  t h e  r e l a t i o n  k~ = 
~ 2 P / N [ v ~ I  + v12 + i v (Mt  - 1) ]  (M t = - (V~2 + iV) / (V22  - i v ) ) .  

D i s p e r s i o n  r e l a t i o n  ( 6 )  h a s  two d i f f e r e n t  r o o t s .  T h e s e  r o o t s  d e t e r m i n e  t h e  wave  num- 
b e r s  of longitudinal waves of the first and second types [2, 3], which propagate inde- 
pendently in a uniform medium. The first type of longitudinal wave approximately corres- 
ponds to cophasal motion of the skeleton and fluid. It propagates rapidly with little at- 
tenuation. In contrast to this, the skeleton and fluid undergo antiphase motion in a 
longitudinal wave of the second type. Thus, the attenuation of this wave is usually great, 
and special experiments are required to record it. Formation of longitudinal waves of the 
second type near interfaces leads to dissipation of the energy of elastic vibrations and 
a change in the characteristics of reflected and refracted longitudinal waves of type one 
and transverse waves [3]. 

The Thomson-Haskell matrix method [6, 7] was used in [5] to perform calculations of 
the reflection and transmission coefficients for a seismic wave moving through a system con- 
taining n different porous strata. 

Here, we calculate the effective wave numbers of elastic waves propagating in a porous 
medium consisting of an infinite structure of periodically alternating layers with different 
properties. The problem of the propagation of elastic plane waves along or across bedding 
was solved in [8] for a one-phase elastic medium. The results in [8] were later generalized 
in [9], where a study was made of the propagation of plane quasi-longitudinal and quasi- 
transverse waves in multilayered periodic structures. We will use the formalism developed 
in [9] to study the acoustic properties of a periodically layered porous medium. 

We will examine a two-dimensional structure, the properties of which change periodically 
along the z axis. The properties are constant along the x axis. Wave propagation in each 
layer will be described by Eqs. (4), (5), the solution of which has the form 

(i = t ,  2), 

w h e r e  m a n d  h~ a r e  t h e  n u m b e r  a n d  t h i c k n e s s  o f  t h e  l a y e r ;  nv i s  a u n i t  v e c t o r  i n  t h e  y d i r e c -  
t i o n i  B (m) c'~m) a r e  c o n s t a n t s  d e t e r m i n e d  f r o m  t h e  b o u n d a r y  c o n d i t i o n s ;  g i s  t h e  c o m p o n e n t  

ik ' k 
of the Wave vector in the direction x; ~(m) = /k(m)2 - ~2; ~m = ~kt(m)2 - ~2; the multiplier 

1 1 
exp(-imt) is omitted for the sake of brevity. 

The following boundary conditions should be satisfied at the boundaries of the layers 

r ~  = r '  = r '  = ' ( s )  nn~ O'S ~S ' ,  Fn~ = n~, un  un ,  
t 

(i r  ~ ' ) u ~ + r  -- -- Un, U ~ U ~ .  

Here, Fnn and Fnx are the normal and tangential components of the tensor of the total 
stresses, which is connected with the tensor of the Biot stresses Pij by the relation Fij = 
Pij + 6ijS; the first and third conditions express the continuity of the normal and tan- 
gential components of the stress tensor, the second describes the equality of pressures in 
the fluid at the interface, the fourth and fifth express the continuity of the normal dis- 
placements of the skeleton and the total displacements, respectively, and the sixth describes 
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the continuity of the tangential displacement of the skeleton at the interface. 

The following matrix equality, a consequence of boundary conditions (8), exists at the 
interface of the m-th and (m - l)-st layers: 

D ~ - I Z ~ - I X ~ - I  = DmZ~lX~, , (9 )  

where  X m i s  a v e c t o r  c o n t a i n i n g  c o n s t a n t s  i n t r o d u c e d  by Eq. ( 7 ) ;  Zm i s  a d i a g o n a l  m a t r i x ,  
the nonvanishing elements of which Z m = exp(ia~m)hm/2), exp (:ia~m)hm/2), exp (ia~m)hm/2), 

exp(-ia~m)hm/2), exp (i~mhm/2), exp (-i~mhm/2)I[, while the elements of the matrix D m have the 

form 

D~11 = 2N<~)~ 2 - -  k ~  )2 [A (~) + 2N (~) @ Q(,O + M~)(Q(~)  + R(~))], D~I~ = 

= Dm~l, D~13 = 2N(~)~ 2 - -  k ~  )2 [A (~) + 2N (~) + Q(~)+ M ~  ) (Q(~) + R(~))], �9 

Dmla = D~la, D~15 = - - 2 N  (~) ~ m ,  D~IG = --Dm15, 

D~21 = - -  k Y  )2 (Q(~) + M Y  ) R ) / r  D ~  = Din21 , Din23 = - -  k ~  )2 (Q($) + 

@ f l J ? ) R ) / ~ m ,  Din24 = Dm23, n~:5  = 0, D~26 = O, n m a l =  - -  2/(~)~a~)~ 

D~a2 = 2N(~)~a~ ), D~33 = - -  2N(~)~a~ ), D~3a = 2N(~)~a~ ), 
2 (m)2 D~35 = N (m) ( 2 ~ - -  k t ), D~3~ = N (m) ( 2 ~  - -  k~)2), 

Din51 = - -  D~52 = a ~  ), D~sa = - -  D~5~ = ~ ) ,  D ~ 5  = ~, D~56 = ~, 

+ 

= - = - -  + 

S u c c e s s i v e l y  a p p l y i n g  Eq. (9)  t o  t h e  i n t e r f a c e s  o f  d i f f e r e n t  l a y e r s ,  we h a v e  t h e  m a t r i x  
e q u a l i t y  Xm = ZmD~XDm_~Zm_zDm_ z 2  -z  . . . .  DoZoX0 F o l l o w i n g  [ 6 ] ,  we can e a s i l y  u s e  t h i s  e q u a l i t y  
to obtain a dispersion relation for the waves in a periodically layered porous medium: 

l exp ( iLa)E - -  Tm_lTm_ 2 ... To] = 0, (10)  

where E is a unit matrix; L is the period of the structure; ~ is the sought effective wave 
number; T m = DmZ~D~ ~. 

In contrast to the dispersion relations for a periodically laminated elastic medium, 
(10) has not four, but six independent roots. These roots correspond to the propagation of 
two quasi-longitudinal waves and one quasi-transverse wave in the direction of increasing 
and decreasing values of z. In the case of the incidence of waves normal to the layers, 
Eq. (i0) decomposes into two independent equations. One of these equations determines the 
wave numbers of effective longitudinal waves of the first and second types, while the second 
determines the wave number of the transverse wave. It must be emphasized that the longi- 
tudinal waves do not propagate independently in a periodically layered saturated porous 
medium due to their mutual transformation at the interfaces of the layers. Thus, they are 
described by a single dispersion relation. 

The solution of dispersion relation (i0) can be found by numerical methods. Calcu- 
lation of the effective wave number of the first type of longitudinal wave is of the greatest 
practical interest. Thus, instead of the term "effective longitudinal wave of the first 
type," we will henceforth simply refer to "effective longitudinal wave." As the first 
example, we will present results of calculations for the case when the layers differ only 
in the filler for thepores, while the effective longitudinal wave propagates in the direc- 
tion normal to the boundaries of the layers~ Similar calculations were performed in [i0], 
where'a study was made of unidimensional strains of an element of a porous medium contain- 
ing layers with different properties. Here, the rigorous theory in [1-4] was not used. 

The properties of the skeleton in our calcu!atons corresponded to those presented in 
[7] (velocities of the longitudinal and transverse waves in the dry skeleton V D = 1310 m/sec, 

3 V s = 870 m/sec, density of the material of the skeleton Ps = 2650 kg/m , porosity ~ = 30%, 
layers filled with water and methane, Kpr = 1Dm 2, compression modulus K = 3.34"10 ~ 
dyne/cm2), the thickness of the layers h~ = h a = 10 cm, and the added mass was assumed to 
be zero (P~2 = 0). Figure i shows the dependence of the velocity of the effective longi- 
tudinal wave on frequency. Curve lwas taken from [10], while curve2 was obtained from our 
calculations. The results show that the velocity of the effective longitudinal wave has 

109 



L 
#~. t{m/sec ~ / { / "  I 

I / / i "  I 

10 50 700 P, Hz 500 1000 

Fig. i 

45- ~ 

l i / /i 

~0 6-0 100 500f, Hz 

Fig. 2 

1'0 2'0 L ,,cm 

Fig. 3 

an appreciable dispersion. Also, such a wave propagating in a laminated medium saturated 
by layers with gas and liquid has a high attenuation factor. In fact, the latter is more 
than one order of magnitude greater than the attenuation of the longitudinal wave in each 
of the layers (Fig. 2). This result can be attributed to the transfer of the energy of 
longitudinal wave of the first type at the boundaries of the layers into rapidly decaying 
longitudinal waves of the second type. 

Comparison of the results of the calculations (curves 2 in Figs. 1 and 2) with the 
results in [i0] (curves i in Figs. i and 2) shows that the maximum discrepancy between 
them is about 30%. Such a deviation can apparently be explained by the fact that the authors 
of [i0] unjustifiably ignored the motion of the skeleton in the calculation of filtrational 
flows of the fluid at the interfaces of the layers. In the Frenkel-Biot theory used in 
the present study, the effect of vibrations of the skeleton on filtration of the fluid in 
the pores is considered automatically. 

As the second example, we will examine the case of alternating layers differing in 
porosity and permeability and saturated with the same fluid. Calculations were performed 
for a medium with Ps = 2700 kg/m 2, Vp = 6400 m/sec, and V s = 3700 m/sec. This corresponds, 
for example, to naturally occurring limestone; the pores are filled with water. The elastic 
constants in the system (i) were calculated by the method in [ii]. The completed calcu- 
lations show that filtrational flow of fluid at the interfaces of the beds has a slight 
(fractions of a percent) effect on the velocity of the effective longitudinal wave. Thus, 
this velocity can be determined through the use of the simpler model of an elastic laminated 
medium. 

Figure 3 shows the dependence of the attenuation factor of the effective longitudinal 
wave on the period of the structure L. Calculations were performed for the case when the 
longitudinal wave is propagated normally to the boundary of the layers. The frequency of 
the elastic waves f = 500 Hz, ~ = 5%, and Kpr = 0.01 ~m 2. The porosity and permeability 
of the second layer was 25; 20% and i; 0.5 pm 2 (curves 1 and 2). Despite the fact that the 
layers are thin for the effective longitudinal wave (Ik~L[ << i), the attenuation of the 
wave depends nonmonotonically on L. This can be explained as follows: with an increase 
in L, an increasing proportion of the energy of longitudinal waves of the second type can 
be absorbed and not reach the next boundary, which leads to an increase in attentuation (left 
side of the graph). With a further increase in L, the degree of attentuation is connected 
with a decrease in the number of boundaries at which the energy of the first-type longi- 
tudinal waves is dissipated by formation of second-type waves. 

ii0 



Thus, the propagation of elastic waves in a periodically laminated, saturated, porous 
medium has several important features which can be linked to the motion of the fluid relative 
to the skeleton at the boundaries between the layers. These features cannot be accounted 
for in the theory of visco-elastic media. They can be best accounted for within the frame- 
work of the Frenkel-Biot model. 
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PROPAGATION OF COMPRESSION WAVES IN A 

POROUS FLUID-SATURATED MEDIUM 

V. E. Dontsov, V. V. Kuznetsov, 
and V. E. Nakoryakov 

UDC 532.546 

Theoretical analysis of the propagation of compression waves in porous media saturated 
by a fluid [1-3] has shown that the main mechanism determining the evolution of the waves 
is interphase friction at the boundary of the fluid and the solid skeleton. It was found 
in [4-7] that one longitudinal wave is propagated in saturated porous media, while [6] 
presented test data on the decay of high-frequency acoustic waves which were generalized 
well by calculations performed in accordance with [i]. The authors of [8, 9], examining 
ultrasonic waves in consolidated porous media, were the first to experimentally detect the 
existence of two types of longitudinal waves - "fast" and "slow." The goal of the present 
study is to obtain experimental data on the dynamics of a compression wave in porous media 
saturated with fluid within a broad range of parameters of the waves and medium. We also 
want to generalize this data on the basis of calculations performed in accordance with well- 
known models. 

Ignoring convective terms for the liquid and solid phases, the system of equations 
for the strains of the solid skeleton e I and the fluid e2 in longitudinal waves has the 
following form in the unidimensional case [i, i0] 
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